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RF Spectrum
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See http://www.ntia.doc.gov/osmhome/allochrt.pdf for full details (1996)
Or http://www.jsc.mil/images/speccht.jpg for the military view
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"Blue Marble" image courtesy of:  Image Science 
and Analysis Laboratory, NASA-Johnson Space 
Center. 8 May, 2003.   "Earth from Space - Search 
by Category." 
<http://earth.jsc.nasa.gov/sseop/efs/categories.htm
>   (31 May 2005).

HF Ionospheric Radio Propagation
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"Blue Marble" image courtesy of:  Image Science 
and Analysis Laboratory, NASA-Johnson Space 
Center. 8 May, 2003.   "Earth from Space - Search 
by Category." 
<http://earth.jsc.nasa.gov/sseop/efs/categories.htm
>   (31 May 2005).

Ionosphere

• The Sun ionizes Earth’s 
upper atmosphere, 
creating the “Ionosphere”

HF Ionospheric Radio Propagation
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"Blue Marble" image courtesy of:  Image Science 
and Analysis Laboratory, NASA-Johnson Space 
Center. 8 May, 2003.   "Earth from Space - Search 
by Category." 
<http://earth.jsc.nasa.gov/sseop/efs/categories.htm
>   (31 May 2005).

HF Ionospheric Radio Propagation

Ionosphere

Reflected signal

• The Sun ionizes Earth’s 
upper atmosphere, 
creating the “Ionosphere”
• The Ionosphere reflects 
MF, HF, and some VHF 
radio signals, allowing 
long distance 
communications
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"Blue Marble" image courtesy of:  Image Science 
and Analysis Laboratory, NASA-Johnson Space 
Center. 8 May, 2003.   "Earth from Space - Search 
by Category." 
<http://earth.jsc.nasa.gov/sseop/efs/categories.htm
>   (31 May 2005).

HF Ionospheric Radio Propagation

Ionosphere

Reflected signal
Multipath

• The Sun ionizes Earth’s 
upper atmosphere, 
creating the “Ionosphere”
• The Ionosphere reflects 
MF, HF, and some VHF 
radio signals, allowing 
long distance 
communications
• Radio signals leave the 
antenna at different 
angles, creating multiple 
reflected signals
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UHF Propagation

• Propagation is mostly line-of-sight
• Reflections off conductive objects (buildings, vehicles, fences, etc.) are prevalent
• Refraction around obstacles is possible

multipath
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Tropospheric Ducting

• Generally caused by regional weather conditions, e.g., 
Temperature Inversion
• Radio signal can propagate 100s of miles with little or no loss
• Specific routes are unpredictable
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Tropospheric Ducting

• Generally caused by regional weather conditions, e.g., 
Temperature Inversion
• Radio signal can propagate 100s of miles with little or no loss
• Specific routes are unpredictable
• Multipath is prevalent
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Effects of Multipath

• Conditions for complete, destructive interference between path1 and path2 :

TX RX

Reflecting surface
Path length d1

Path length d2

Wavelength λ

( )
1 2

1 2 .5
A A
d d k λ

=
− = +

• Equal signal strengths

• Odd multiple of one half 
wavelength path difference
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Requirements for Destructive Interference

• Two multipath signals must be nearly the same amplitude and almost exactly 
180o out of phase with each other to cancel.
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Requirements for Destructive Interference

• Two multipath signals must be nearly the same amplitude and almost exactly 
180o out of phase with each other to cancel.

• Changing the paths slightly will prevent cancellation

0 100 200 300
2

1

0

1

2

sin 2 π⋅
i

100
⋅⎛⎜

⎝
⎞
⎠

−

1 δA+( ) sin 2 π⋅
i

100
⋅ φ+⎛⎜

⎝
⎞
⎠

⋅

i

z x y+:= φ 0.2= δA 0.01=

0 100 200 300
1

0

1

zi

i

0 100 200 300
2

1

0

1

2

sin 2 π⋅
i

100
⋅⎛⎜

⎝
⎞
⎠

−

1 δA+( ) sin 2 π⋅
i

100
⋅ φ+⎛⎜

⎝
⎞
⎠

⋅

i

z x y+:= φ 0.02= δA 1 10 3−×=

0 100 200 300
1

0

1

zi

i



NSF-REU
6/1/05

Copyright Stevens Institute of Technology ©2005
All Rights Reserved

Channel dispersion

• Multipath reflections create time dispersion of the received signal
• Movement of the receiver, transmitter or objects in the environment create 
changes in the multipath environment

multipath fading, dispersion
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Doppler Shift

• Relative motion of transmitter/receiver creates an apparent frequency offset due 
to Doppler shift

• Offset is proportional to speed and frequency

• At a 2 GHz carrier frequency, 60 mph creates a 200 Hz Doppler shift
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Noise, Signal-to-Noise Ratio

Transmitter

Receiver

Thermal “kTB” noise

• Thermal noise is proportional to receiver bandwidth
• -174 dBm/Hz 
• Increased by noise figure of receiver

• Transmitter signal attenuated by distance, obstacles
• Square law attenuation in free space, ~3.5 power in terrestrial environment

• Link budget limits receiver performance

“Excess” receiver noise

Output power P

Path loss
1/r2 - 1/r4
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Multipath Dispersion/ 
Frequency Selective Fading

• Delayed versions of signal interfere with each other
– Equivalent to intersymbol interference on a baseband wireline system

• Multipath is modeled as a delay profile - signal delay and average amplitude with 
randomly varying instanteous signal level

• For comparison purposes, typical indoor and outdoor delay profiles have been 
standardized:

– Typical Urban, Hilly Terrain, Mountainous Terrain profiles
– Exponential delay profile

• Through the Fourier Transform, delay profile can be studied in frequency domain

Transmitter

Receiver

t
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Wireless Communications Challenges

Doppler frequency shift

Noise, multipath fading,
interference impair signal

time

-40 dB
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Multipath dispersion
impairs high symbol rates

time

Channel response

path loss

multipath fading, dispersion

Frequency selective fading
impairs single carrier systems

frequency

Channel response
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shadow fading
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GSM “Typical Urban” channel

Signal
voltage

time

Signal in Time Domain
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Signal in Frequency Domain

GSM “Typical Urban” channel
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GSM “Typical Urban” channel
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Multiple Signals in Frequency Domain
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~10 years of Wireless Evolution

~1994 600 mW
Analog AMPS

12.7 oz – 360 gm

~1996 600 mW
AMPS/TDMA
6 oz – 170 gm

~2001 600 mW
AMPS/TDMA

3.4 oz – 96 gm

~1990 3W
Analog AMPS

67.4 oz – 1900 gm
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Transceiver Anatomy 101



NSF-REU
6/1/05

Copyright Stevens Institute of Technology ©2005
All Rights Reserved

Transceiver Anatomy 102A
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Transceiver Anatomy 102B
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Lessons from Anatomy

Shield well,
shield often
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Alternative Wireless Technologies –
Cisco 802.11b WLAN Adapter

44 MHz reference

MACRAM

IF
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Alternative Wireless Technologies –
Orinoco 802.11b WLAN Adapter

22 MHz reference

Antennas

RAM
EEPROM

RF
conn
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RF
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