National Science Foundation

Research Experience for Undergraduates Program

Radio Propagation and Diversity

Bruce McNair

Burchard 206 201-216-5549 bmcnair@stevens-tech.edu http://koala.ece.stevens-tech.edu/~bmcnair

RF Spectrum

Typical ranges

RF Spectrum

Typical ranges

All Rights Reserved

"Blue Marble" image courtesy of: Image Science and Analysis Laboratory, NASA-Johnson Space Center. 8 May, 2003. "Earth from Space - Search by Category."

<http://earth.jsc.nasa.gov/sseop/efs/categories.htm > (31 May 2005).

NSF-REU 6/1/05

lonosphere

• The Sun ionizes Earth's upper atmosphere, creating the "Ionosphere"

"Blue Marble" image courtesy of: Image Science and Analysis Laboratory, NASA-Johnson Space Center. 8 May, 2003. "Earth from Space - Search by Category."

<http://earth.jsc.nasa.gov/sseop/efs/categories.htm > (31 May 2005).

NSF-REU 6/1/05

<http://earth.jsc.nasa.gov/sseop/efs/categories.htm > (31 May 2005).

NSF-REU 6/1/05

Reflected signal Multipath Ionosphere

• The Sun ionizes Earth's upper atmosphere, creating the "Ionosphere"

- The lonosphere reflects MF, HF, and some VHF radio signals, allowing long distance communications
- Radio signals leave the antenna at different angles, creating multiple reflected signals

[&]quot;Blue Marble" image courtesy of: Image Science and Analysis Laboratory, NASA-Johnson Space Center. 8 May, 2003. "Earth from Space - Search by Category."

<http://earth.jsc.nasa.gov/sseop/efs/categories.htm > (31 May 2005).

RF Spectrum

Typical ranges

UHF Propagation

- Propagation is mostly line-of-sight
- Reflections off conductive objects (buildings, vehicles, fences, etc.) are prevalent
- Refraction around obstacles is possible

RF Spectrum

Typical ranges

Tropospheric Ducting

- Generally caused by regional weather conditions, e.g.,
- **Temperature Inversion**
- Radio signal can propagate 100s of miles with little or no loss
- Specific routes are unpredictable

Tropospheric Ducting

- Generally caused by regional weather conditions, e.g.,
- Temperature Inversion
- Radio signal can propagate 100s of miles with little or no loss
- Specific routes are unpredictable
- Multipath is prevalent

Effects of Multipath

• Conditions for complete, destructive interference between path₁ and path₂:

- $A_1 = A_2$ Equal signal strengths
- $d_1 d_2 = (k + .5)\lambda$ Odd multiple of one half wavelength path difference

Requirements for Destructive Interference

• Two multipath signals must be nearly the same amplitude and almost exactly 180° out of phase with each other to cancel.

Requirements for Destructive Interference

- Two multipath signals must be nearly the same amplitude and almost exactly 180° out of phase with each other to cancel.
- Changing the paths slightly will prevent cancellation

Channel dispersion

- Multipath reflections create time dispersion of the received signal
- Movement of the receiver, transmitter or objects in the environment create changes in the multipath environment

Doppler Shift

- Relative motion of transmitter/receiver creates an apparent frequency offset due to Doppler shift
- Offset is proportional to speed and frequency
- At a 2 GHz carrier frequency, 60 mph creates a 200 Hz Doppler shift

Noise, Signal-to-Noise Ratio

- Thermal noise is proportional to receiver bandwidth
- -174 dBm/Hz
- Increased by noise figure of receiver
- Transmitter signal attenuated by distance, obstacles
- Square law attenuation in free space, ~3.5 power in terrestrial environment
- Link budget limits receiver performance

Multipath Dispersion/

Frequency Selective Fading

- Delayed versions of signal interfere with each other
 - Equivalent to intersymbol interference on a baseband wireline system
- Multipath is modeled as a delay profile signal delay and average amplitude with randomly varying instanteous signal level
- For comparison purposes, typical indoor and outdoor delay profiles have been standardized:
 - Typical Urban, Hilly Terrain, Mountainous Terrain profiles
 - Exponential delay profile
- Through the Fourier Transform, delay profile can be studied in frequency domain

Wireless Communications Challenges

Signal in Time Domain

GSM "Typical Urban" channel

Signal in Frequency Domain

Multiple Signals in Frequency Domain

~10 years of Wireless Evolution

Transceiver Anatomy 101

Copyright Stevens Institute of Technology ©2005 All Rights Reserved

Transceiver Anatomy 102A

Copyright Stevens Institute of Technology ©2L---All Rights Reserved

Transceiver Anatomy 102B

Copyright Stevens Institute of Technology ©2L---All Rights Reserved

Lessons from Anatomy

Copyright Stevens Institute of Technology ©2005 All Rights Reserved

Alternative Wireless Technologies – Cisco 802.11b WLAN Adapter

Copyright Stevens Institute of Technology ©2005 All Rights Reserved

Alternative Wireless Technologies – Orinoco 802.11b WLAN Adapter

NSF-REU 6/1/05

Copyright Stevens Institute of Technology ©2005 All Rights Reserved

Shield