Performance of an Experimental 384 kb/s 1900 MHz OFDM Radio Link In a Wide-Area High-Mobility Environment

Bruce McNair, Leonard J. Cimini, Jr., Nelson Sollenberger

bmcnair, ljc, nelson @ research.att.com

AT&T Labs - Research Wireless Systems Research Red Bank, NJ

OFDM for High Speed Wireless Data Networking

- Low symbol rate (~3.5 kbaud) protects against changing mobile channel
- Sparse constellation on each carrier (QPSK) provides resistance against noise
- Coding across tones provides frequency diversity
- Large number of carriers provides high capacity (189 user bits/288 μsec ~544 kb/s)

OFDM Receiver - DSP Hardware Architecture

OFDM Experimental Hardware

- Baseband signal processing based on commercial off-the-shelf DSP hardware with some custom designed components
- •1900 MHz transceiver
- Real-time performance measured through RF fading simulator
- System parameters:

AT&T

- >384 kb/s end user data rate
- 800 kHz downlink bandwidth
- GSM-derived clock rates

Experimental setup for OFDM receiver performance measurements

- Simulated channels: AWGN, flat fading, two-ray, GSM models
- Tested one- and two-branch receiver
- Excellent repeatability and agreement with simulation and theory

Theoretical versus measured performance: one-branch receiver in AWGN

Performance Summary

	Fading rate:	1 Hz	5 Hz	40 Hz	100 Hz	200 Hz
Channel:	AWGN			7.0 dB		
	Bad Urban	9.3 dB		9.4 dB	9.7 dB	10.8 dB
	2 µsec			8.9 dB		11.9 dB
	5 µsec	8.1 dB	8.6 dB	8.9 dB	9.2 dB	10.4 dB
	10µsec			9.1 dB		
	20µsec	9.0 dB		9.5 dB		11.6 dB
	Typical Urban	10.4 dB		10.5 dB	10.6 dB	12.0 dB
	Hilly Terrain			11.2 dB	11.6 dB	14.2 dB
	Mountainous Terrain			10.4 dB		13.1 dB
	Flat	11.2 dB		10.9 dB	11.2 dB	12.7 dB

SNR required for 10% FER, two-branch receiver

	Fading rate:	1 Hz	5 Hz	40 Hz	100 Hz	200 Hz
Channel:	AWGN			9.4 dB		
	Bad Urban	13.4 dB		13.5 dB	14.4 dB	18.3 dB
	2 μ _{sec}			13.5 dB		~21 dB
	5 µsec	13.1 dB	13.1 dB	13.1 dB	14.0 dB	~21 dB
	10 µsec			13.2 dB		
	20 µsec	14.5 dB		14.0 dB		>21 dB
	Typical Urban	14.4 dB		14.8 dB	15.5 dB	>21 dB
	Hilly Terrain			15.8 dB	17.3 dB	>>21 dB
	Mountainous Terrain			16.0 dB		>>21 dB
	Flat	17.1 dB		17.1 dB	19.1 dB	>21 dB

SNR required for 10% FER, one-branch receiver

Conclusions

- Real-time DSP prototype demonstrated:
 - performance within 1-2 dB of theory in AWGN
 - performance within .25 dB of idealized simulation for two-ray fading
 - robustness of OFDM against delay spread
 - robustness of blind differential-in-frequency timing estimation
- OFDM can offer good performance with straightforward receiver (e.g., simple combining, differential detection, (63,31) RS coder)
- Two-branch receiver diversity provides 4 8+ dB performance gain for variety of channel conditions
- Coding across OFDM tones provides effective frequency diversity
- Shorter (<288 µsec) OFDM blocks needed for high fading rates
- Wideband OFDM with improved modulation, coding, channel estimation promises excellent performance

